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HOW GREEN IS YOUR ALGORITHM? 
ASSESSING THE CARBON FOOTPRINT OF 
MACHINE LEARNING 
Abstract: The rapid advancement of machine learning (ML) and its 
extensive application across various fields have led to numerous 
innovative uses. However, large-scale ML systems require significant 
computational resources, energy usage, and result in associated carbon 
emissions, which have raised some concerns. ML can combat climate 
change with smart decision-making, but energy-intensive models like 
deep learning also impact the environment. In this paper, we applied 
the CodeCarbon, an open-source tool for estimating energy consumed 
and carbon dioxide (CO₂) emissions during the runs of ML models 
(Linear Regression, k-Nearest Neighbors Regressor, and Decision Tree 
Regressor). Both default and optimized models show low CO₂ 
emissions, with optimization resulting in slightly higher values.  The 
impact of geographical locations related to the carbon intensity of 
electricity generation on emissions is also examined, along with the 
effects of utilizing the complimentary cloud service GoogleColab.   Due 
to low emissions, applied ML algorithms are suitable for education, 
research, and practice. The increasing use of artificial intelligence (AI) 
highlights tracking of carbon emissions, even in lightweight ML 
algorithms, to introduce sustainable AI practices. The aim of this paper 
is to raise awareness of the energy and environmental cost of AI at all 
levels of research. 
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INTRODUCTION 
Over recent decades, the increasing occurrence of 
extreme weather events (storms, droughts, wildfires, 
and floods) has underscored the destructive 
consequences of climate change. Global emissions of 
greenhouse gases (GHG) have continued to increase 
over the past several decades, despite widespread 
scientific agreement on the importance of reducing 
these emissions.  Comprehensive response to tackle 
climate change involves both mitigation and adaptation 
strategies. Recent rapid scientific and technological 
developments have increased the application of 
artificial intelligence (AI) in various sectors to address 
climate change, including energy, transportation, 
industry, land use, and disaster resilience (Kaack, 
2021).  Machine learning (ML), a branch of AI, is 
increasingly used in predicting, classifying, 
approximating, and optimizing climate datasets for 
real-time monitoring, trend forecasting, and risk 
estimation (Olawade, 2024a).  Although AI is widely 
recognized as an appropriate tool for achieving 
sustainability and net-zero emissions (Olawade, 2024b; 
Rolnick et al., 2019; Vinuesa, 2020), there is evidence 
that its role is twofold.  ML training and a vast number 
of parameters tuning (as in deep learning and large 
language models) can be time and energy demanding. 

The iterative training and hyperparameter tuning of ML 
architectures are computationally intensive, leading to 
increased electricity consumption and higher GHG 
emissions (Strubell 2020).  Many scientists suggest 
shifting the focus from achieving high accuracy to 
achieving high efficiency, due to the extensive use of 
AI with significant computational costs and large 
carbon footprints (Schwartz, 2020; Bergstra, 2011).  
According to the Intergovernmental Panel on Climate 
Change (IPCC) projections, limiting carbon emissions 
to 2 metric tons of CO2 

1equivalent per person per year 
is necessary to maintain the global temperature rise 
below 1.5°C (IPCC, 2023).  Emissions of 100 
megatonnes of CO2 per year produced by data centers 
and high-performance computing (HPC) facilities 
could have a major impact on climate change in the 
future (Lannelongue 2021, Luccioni, 2023; Strubell, 
2019, Lannelongue, 2023, Bannour, 2021, Dodge, 
2022, Henderson, 2020). Energy consumption is linked 

                                                 
1 The CO2 equivalent or CO2eq is a metric measure 
used to compare the emissions from various GHG 
based on their Global Warming Potential (GWP), by 
converting amounts of other gases to the equivalent 
amount of CO2 with the same GWP. 
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to various activities, including the production of 
computer hardware, model development, data storage, 
data transfer, data processing, and cooling of large data 
centres. According to research, NVIDIA’s new AI 
servers are projected to consume more energy than 
Argentina and Sweden by 2027 (Dayarathna, 2015; 
Xing, 2023).  Since improvements in hardware, 
software and algorithms have significantly enhanced 
scientific research, there is an estimation of 9 billion 
hours spent on scientific computing in 2020, but the 
computational cost of such research activities and 
contribution of GHG emissions has not been 
completely explored (Extreme Science and Engineering 
Discovery Environment XSEDE).  Also, to assess the 
AI environmental impact, it is important to know what 
kind of electricity is generated in a country  ̶  renewable 
or non-renewable. The uneven distribution of 
renewable and non-renewable electricity sources 
worldwide results in a significant AI carbon footprint 
for some countries (Electricity Maps).  This raises a 
critical question: are we considering AI, on its current 
path, as sustainable? Concerns about the potentially 
huge negative environmental impact of AI in the future 
have established a new sustainable approach ̶ green AI. 
As the name suggests, Green AI promotes 
performance/efficiency trade-off, reduction of 
computational cost, and reasonable use of resources 
(renewable energy sources) (Alzoubi, 2024; Schwartz 
2020). Various tools can estimate GHG emissions 
during machine learning runs, including Green-
Algorithms, CodeCarbon, Eco2AI, CarbonTracker, 
MLCO2, and Cumulator. Various studies summarise 
different methods for measuring energy consumption 
and emissions associated with computing activities 
(Bouza et al.).  2023, Lannelongue 2023).  

This paper utilizes CodeCarbon to estimate the carbon 
footprint during the execution of three machine 
learning algorithms: Linear Regression, k-Nearest 
Neighbors Regressor, and Decision Tree Regressor.  
CodeCarbon is an open-source tool designed to 
estimate the amount of CO2 produced by the cloud or 
personal computing resources used to execute the code 
(CodeCarbon). Since energy efficiency and carbon 
emissions have become a critical issue in ML research 
and deployment, our aim was to compare emissions 
from both default and optimized ML algorithms and 
support sustainable, energy-efficient AI practices, 
particularly in education, by tracking CO2 emissions. 
The European Federation of Academies of Sciences 
and Humanities reports that the emission of CO2 
equivalents per scientist per year ranges from 1 to 30 
tonnes (ALLEA 2022), accounting for emissions from 
computing, laboratories (LEAF framework), supply 
chains, conferences, and other related activities.  
Although ML algorithms commonly used in education 
(by students, academics, researchers, practitioners, etc.) 
have a low and moderate complexity (unlike deep 
learning and large language models with billions of 
parameters), the impact they may have in the future due 
to increasing use should be investigated. Although the 
results indicate that CO2 emissions from some machine 

learning algorithms are significantly lower than those 
generated by GPT training (552 tCO2eq) (Patterson, 
2021), our objective is to raise awareness of the energy 
and environmental costs associated with AI tools at all 
levels of research.  However, most ML applications in 
industry and education rely on simpler models like 
Linear Regression and Decision Trees. Their carbon 
footprint is often considered negligible and ignored.  
This paper aims to fill that gap by quantifying and 
analysing emissions from lightweight models using the 
CodeCarbon library. 

METHODOLOGY 
CodeCarbon is an open-source library simply 
implemented in Python code. This tool tracks the 
emission of CO2 during the ML run. Emission of CO₂ 
is the product of the carbon intensity of electricity 
generation (a given country) and energy consumed. 
Carbon intensity is a known amount of CO2 emitted for 
each kilowatt-hour (kWh) of electricity generated, 
calculated as a weighted average of the emissions from 
the different energy sources fossil fuels (coal, 
petroleum, natural gas) and renewable (solar power, 
hydroelectricity, biomass, geothermal, wind, nuclear, 
etc.) (Electricity Maps). Carbon intensity is measured 
as kilograms (or grams) of CO2 emitted per kilowatt-
hour of electricity (kg/kWh).  Energy consumed 
(quantified as kWh) is the amount of electrical energy 
used by the computational infrastructure (machine) 
during the execution of the code.  

CO2eq emissions (kg) = carbon intensity (kg/kWh) X 
energy consumed (kWh) 

CodeCarbon uses global carbon intensity of electricity 
per country, representing average value from the 
previous year. Electricity in Serbia is primarily 
generated from non-renewable sources, leading to a 
carbon intensity of 0.671 kgCO2eq/KWh. This is 
higher compared to Norway and Switzerland, which 
have carbon intensities of 0.031 kgCO2eq/KWh and 
0.037 kgCO2eq/KWh, respectively (Ember).  Carbon 
intensity of electricity generation defines emissions, 
and for the same energy consumption ML application 
in Serbia produce more than 20 times higher emission 
than in Norway and Switzerland. Figure 1a) shows 
global carbon intensity of electricity generation in 
Europe for 2024, and 1b) annually carbon intensity 
values for Serbia during the period from 2000 to 2024. 
The values are shown in grams (g). 

CodeCarbon measures energy consumption from three 
main hardware parts: Graphics Processing Unit (GPU), 
Central Processing Unit (CPU) and memory. Energy 
consumption by CPU can be estimated using two 
methods. The first method estimates energy 
consumption multiplying training duration by thermal 
design power – TDP, representing the maximum 
amount of power that CPU or GPU can dissipate when 
operating at maximum performance. The second 
method uses software integrated tool Running Average 
Power Limit (RAPL) which monitors and controls the 
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power usage of the processor and its components 
(Bouza, 2023). Efficiency of the computing facility or 
Power Usage Efficiency (PUE) is the efficiency 
coefficient of the data centre. Recommended PUE 
value for personal computers is 1. In this experiments 
ML training and testing are performed on the same 
hardware setup to ensure comparability. Training 
carried out with an Intel Core i5 processor (CPU), 
integrated GPU and 16 GB RAM (Table 1).  

 

 

Figure 1. a) Carbon intensity of electricity generation 
per country (average values for 2024). Carbon 

intensity for Serbia is 671 gCO2.eq/KWh. b) Carbon 
intensity for Serbia during the period from 2000 to 

2024. Source: Ember (2025); Energy Institute - 
Statistical Review of World Energy (2024). 

Default and optimized version of three ML algorithms 
(Linear Regression, k-Nearest Neighbors Regressor, 
Decision Tree Regressor) is evaluated by CodeCarbon 
to assess CO2 emission. In a regression model, the 
output as a dependent variable is obtained as a function 
of the independent input variable (Alpaydın, 2010). ML 
training is performed using supervised learning which 
is based on a dataset of input and corresponding output 
data. Training set consists of pairs of input and 
associated output data. ML algorithms reach a defined 
performance level when the difference between the 
actual output and the anticipated output becomes 
minimal. 

Linear Regression is an easy, understandable, 
interpretable and applicable model with low 
computational complexity and fast training. Linear 
regression assumes a linear relationship between 

variables and usually does not perform well with 
complex, non-linear data. The fitting line is obtained 
using the least squares method (which minimizes the 
difference between the anticipated and the actual 
values). In an optimized linear regression model, 
generalization is enhanced, and overfitting is reduced, 
allowing minimal energy consumption.  

The k-Nearest Neighbors Regressor is a non-parametric 
model, applicable for complex relationships. It is 
adaptable to different data types and easy easy-to-
implement model. k-Nearest Neighbors predicts a value 
of new data based on its similarity to nearest data in the 
training set, e.g., assumes that nearest objects are 
similar (Altman, 1992). Its performance varies 
significantly with data size and dimensionality, and 
with large datasets algorithm can be computationally 
expensive. The optimization focuses on dimensionality 
reduction and efficient searching, which reduces 
inference time and memory usage, leading to lower 
energy demand of the optimized model.  

Decision Tree Regressors uses a tree-like structure to 
make predictions by splitting data into subsets. A 
decision tree is composed of internal decision nodes 
and terminal leaves. A decision tree predicts responses 
to data by following the decisions in the tree from the 
root (beginning) down to a leaf node. A tree consists of 
branching conditions where the value of a predictor is 
compared to a trained weight. During the training 
number of branches and the values of weights are set 
(Alpaydın, 2010). Decision Tree Regressors can predict 
continuous values of variables and deal with non-linear 
relationships, but it is prone to overfitting and requires 
carefully selected data. Optimizations such as reducing, 
limiting maximum tree depth, and setting minimum 
sample thresholds per node effectively control model 
complexity, reduce training time, and enhance 
interpretability, contributing to a measurable decrease 
in energy usage.  

Energy consumption during runs of default and 
optimized ML models, and during the optimization 
processes are compared. For all ML algorithms, 
optimized models have shown lower emission and 
energy consumption in comparison with the initial 
default models. In all cases, emissions during the 
optimization processes were higher by few orders of 
magnitude The optimization process sets the best 
parameters to maximize the accuracy of a ML model, 
but it is often time- and energy-intensive.  

RESULTS AND DISSCUSSION 
The database for supervised training was taken from 
the UC Irvine Machine Learning Repository site 
(archive) that represents a collection of continuous and 
ordinal data types. Linear Regression, k-Nearest 
Neighbors Regressor and Decision Tree Regressor are 
trained and optimized using this dataset. Data are used 
offline i.e. data are downloaded and stored locally, to 
avoid repetition and additional energy costs (from data 
transmission and data center compute loads). 
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To estimate the carbon footprint of machine learning 
runs, experiments were conducted using open-source 
Python software within the PyCharm environment, 
with the CodeCarbon library activated to monitor 
emissions. For our purpose CodeCarbon library is 
confirmed as the straightforward solution. Application 
of CodeCarbon tool was effortlessly, and the data are 
recorded in a separate file. CodeCarbon measurement 
starts simultaneously with the ML run and stops when 
ML run terminates. All ML runs were performed at 
hardware characteristics described in Table 1. Also, 
GoogleColab environment is used to compare CO2 
emissions. 

Table 1. Hardware characteristics 

CPU 
Intel(R) Core(TM) i5-
9500 CPU @ 3.00GHz 

RAM 16GB 
GPU iGPU 

Location Serbia, SRB 

OS 
Windows-10-

10.0.19045-SP0 
Python_version 3.13.2 

CodeCarbon version 2.8.2003 
tracking_mode machine 

The hardware components that consume the most 
energy include: Central Processing Unit (CPU), 
Graphics Processing Unit (GPU), and RAM. Usually, a 
CPU uses more energy than RAM (Henderson, 2020). 
Contribution to GHG emission by other hardware 
elements, such as storage and network can be 
considered negligible. CodeCarbon tool cannot 
measure energy consumption of non-NIVIDIA GPUs. 
Estimation of energy consumption by hardware defined 
in Table 1, should be considered as a conservative (we 
assume that iGPU contribution is small). Results of 
energy consumed by hardware parts (CPU and RAM) 
during the Linear Regression runs (Figure 2) confirm 
the previous conclusion. The difference between CPU 
and RAM energy consumption is around one order of 
magnitude. 

 

Figure 2. Energy consumed by components during the 
Linear Regression run (values shown on the y axis in 
kWh). CPU energy consumption is around 10 times 

more than the energy consumed by RAM. 

Energy consumption during the run of default and 
optimized model, as well as the optimization process 
for the three applied ML algorithms are compared. To 
reach defined accuracy ML algorithm should be 

tailored to the problem that needs to be solved by 
tuning parameters.  

Optimization process implies parameters adjustment to 
improve predictive performances, balance the bias-
variance trade off, enhance generalization, and 
efficiency. Optimized models ensure stability and 
maintain efficiency in real-world applications. 
Generally, it performs faster and shows more 
sustainable features. However, the optimization process 
can be time and energy demanding. Is it worth to rise 
energy consumption to optimize ML models? It 
depends on the purpose. For intensive and long-term 
ML usage, optimization can be a more sustainable 
solution, because an optimized model in the long run 
can provide a smaller emission. If machine learning 
algorithms are intended for short-term use—such as in 
educational contexts like lectures or exercises—where 
high precision and extensive parameter tuning are not 
essential, it is worth considering whether model 
optimization is necessary or if the default configuration 
is sufficient to solve the given task.. ML algorithms 
with moderate complexity and small training set, and 
consequently negligible emissions, are very suitable for 
educational purposes, but there is no need to perform 
many iterations to achieve high precision.  

Linear Regression is a simple ML model, easy to train. 
Energy consumption of Linear Regression training and 
testing is minor. In comparison of energy consumption 
by default and, optimized model, as well as the 
optimization process, it is obvious that the difference is 
not worthy of consideration. Negligible CO2 emissions 
of Linear Regression make it very appropriate for 
multiple applications in different fields, regarding 
responsible and sustainable AI. It is appropriate for 
applications in education, industry, engineering, 
statistics, biostatistics, etc. In education, it is a core to 
statistics and introductory ML courses, and for teaching 
interpretability and inference models. Linear 
Regression has various applications in industry and 
engineering in forecasting, strategies, trend analysis, 
predicting system performance, control system 
modelling, thermal system modelling, stress-strain 
modelling in materials, etc. (Freedman, 2009; James, 
2013). Also, it is applicable in high-dimensional 
biological and medical data.  

Three parameters of the k-Nearest Neighbors Regressor 
are adjusted during the optimization process: 
n_neighbors, which determines model complexity; 
leaf_size, which controls the size of leaf nodes in tree-
based neighbor searches; and p, which determines the 
distance metric used. The best performing model had 
values   n_neighbors = 10 (the number of nearest 
neighbors), leaf_size = 20 (optimizes neighbor search 
efficiency without affecting accuracy), and p = 3 
(Minkowski distance). Parameters n_jobs = 1 indicates 
runs on a single core (serial processing). The results 
obtained for both the default and optimized models 
indicate exceptionally low emissions (Figure 3).  The 
accuracy of models with different parameters (default 
or the best) varies. The optimized model (with the best 
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parameters) provides significantly higher accuracy. As 
we expected (Figure 3), the emission of optimization 
(orange line) is higher due to retraining. The optimized 
model (grey line) exhibits the lowest emissions, with 
the least execution time and energy consumption. 
These results confirm that processes of parameter 
tuning can be more carbon intensive, but the optimized 
model has one order of magnitude lower emissions than 
the default model. This conclusion is significant for the 
training of deep learning and large language models, as 
their emissions can be higher (Lacoste, 2019; 
Henderson, 2020; Strubell, 2019).   

 

 

Figure 3. k-Nearest Neighbors Regressor emissions of 
CO2 during the runs of the default model (blue line), 

and optimized model (grey line), as well as during the 
optimization process (orange line). 

Bearing in mind that the k-Nearest Neighbors 
Regressor, produces negligible emissions, optimization 
for achieving high accuracy may be performed, without 
a meaningful impact on the environment. K-Nearest 
Neighbors is a straightforward algorithm commonly 
used in education, computational chemistry (for 
predicting molecular properties), medical imaging, 
remote sensing, nonlinear regression, and other fields. 
In education, it is suitable for teaching the concept of 
ML learning based on similarity, and for demonstrating 
overfitting and model complexity. The negligible 
carbon footprint of this algorithm encourages its 
applications in both industry and engineering for 
recommender systems, fraud detection, sensor data 
interpolation, and image processing.  
Decision Tree Regressor follows the same pattern of 
emissions between default and optimized models and 
the optimization process (Figure 4). Parameters are 
adjusted to define a regularized, shallow decision tree 
that prioritizes robustness and generalization.  The best 
suited parameters are criterion = absolute_error (the 
splitting criterion for evaluating the quality of a split, 
encourages robust predictions), max_depth = 2 (limits 
the maximum depth to 2 levels and reducing model 
complexity), and max_leaf_nodes = 3 (limits the 
number of terminal nodes and controls overfitting). 
This combination of parameters resulted in a 
straightforward and interpretable model that 
emphasizes robustness. The model with optimal 
parameters is significantly more accurate than the 
default model. The emission of the default model (blue 
line) is slightly higher than for the optimized model 
(grey line). As anticipated, the optimization process 
involves increased computational effort and results in 
higher emissions (represented by the orange line). 
Decision Tree Regressor optimization process shows a 

slightly higher emissions than k-Nearest Neighbors 
Regressor, but the accuracy of the optimized model is 
remarkably better than for the default. This algorithm 
requires adaptation to the problem by adjusting the 
parameters. Even though model optimization results in 
higher emissions, it should be optimized if the model is 
intended for long-term use. As previous ML models 
with negligible carbon emissions, this algorithm is also 
appropriate for education, especially for introducing 
concepts of model interpretability and as a base for 
learning more complex algorithms (for example, 
Random Forests). It is widely used across industries for 
purposes such as fault detection, performance 
prediction, medical diagnostics, ecology, and more. 

 

Figure 4. Decision Three Regressor emissions of CO2 
during the runs of default model (blue line), and 

optimized model (grey line), as well as during the 
optimization process (orange line). 

Estimation of emissions and carbon footprint should 
draw attention to concerning current issue - the 
increasing use of AI in education, science, and in 
everyday life by millions of people. We usually 
approach computing resources as if they are limitless, 
but they are constrained in energy and environmental 
costs. This paper tracks the footprint of ML algorithms 
used to study basic principles of ML by solving 
specific tasks for a master's thesis. Emissions of default 
and optimized ML models are very small (< 1 µg 
CO2eq), and the optimized models have one order of 
magnitude less emission than default, for both 
algorithms. Optimization processes for both algorithms 
(k-Nearest Neighbors and Decision Tree) perform more 
slowly, last longer, and show higher emissions (by 
several orders of magnitude). Higher emissions of 
optimization may have different origin that should be 
investigated (even if the model is lightweight, 
performing a large number of operations can extend 
runtime and memory usage, leading to higher overall 
energy consumption and emissions). If the optimization 
is run on a machine powered by a high-carbon-intensity 
grid (e.g., coal-heavy), even small increases in energy 
usage result in large increases in CO₂ equivalent 
emissions.  

To compare emissions for different regions, we 
selected a country with a low carbon intensity value, 
Norway (Figure 5 and Figure 6). Figures 5 and 6 
illustrate a decline in emissions by an order of 
magnitude when the location is changed from Serbia to 
Norway. The carbon intensity of electricity generation 
in Norway (0,031 kgCO2eq/KWh) is significantly 
lower than in Serbia (0,671kgCO2eq/KWh), primarily 
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due to the predominance of renewable energy sources. 
Used ML algorithms are simple, and their optimization 
may not have a major impact on emissions, but when 
we deal with complex hyperparametric ML 
architectures at high carbon intensity locations, 
optimization becomes a concerning issue. 

 

 

Figure 5. Comparison of k – Nearest Neighbors 
Regressor emissions during the optimization processes 

at two selected locations: Serbia (blue line) and 
Norwegian (orange line). 

 

Figure 6. Comparison of Decision Tree Regressor 
emissions during the optimization processes at two 

selected locations: Serbia (blue line) and Norwegian 
(orange line). 

Although energy consumption and emissions during the 
training and run of three applied ML algorithms are 
negligible, tracking carbon footprint is the first step 
toward fostering environmentally responsible AI. It 
should be kept in mind that the rapid development of 
computer technology and various algorithms can have 
notable environmental costs. In problem solving, 
scientists, practitioners, and other users typically 
emphasize accuracy without considering the energy 
expended during multiple iterations and trial-and-error 
processes. Each new run can be computationally 
intensive and energy demanding, particularly for 
complex algorithms with hyperparameters. Optimized 
models can be more accurate, and less energy intensive, 
but higher emissions during the optimization process 
are a critical issue. Complex algorithms may overfit, 
and optimization does not always guarantee improved 
accuracy. Numerous open questions regarding to 
parameter tuning, algorithm efficiency, and 
introduction of new ML practices require detailed 
analysis. Prioritizing cost-benefit or accuracy-
efficiency issues is the first step in the responsible AI 
application. The AI life cycle's carbon footprint 

encompasses manufacturing, transport, distribution, 
dataset creation, transfer, and storage. Training AI 
models is just a small part.  
To illustrate this statement GoogleColab is used as a 
cloud-based environment. GoogleColab is a widely 
used resource, with data centers located around the 
world. Cloud-based environments offer accessible 
platforms for ML experiments by supplying virtual 
machines in large-scale data centers. However, it is not 
possible to choose a server for data processing during 
the environment creation. In the GoogleColab 
environment, there are certain restrictions for the user 
(administrator rights, access to RAPL files, actual 
insight into hardware resources).  

 

Figure 7. Comparison of emissions for the test 
machine and GoogleColab during the runs of three ML 

algorithms and their optimizations. 

Emission report by GoogleColab includes energy 
consumption by full infrastructure: cooling, 
networking, data storage, etc. CodeCarbon estimates 
emissions based on actual energy consumption during 
the local execution of code, measuring CPU, GPU, and 
memory usage, along with execution time and regional 
carbon intensity of electricity (Lacoste et al., 2019). 
GoogleColab reports emissions for the entire duration 
that a virtual machine is distributed, regardless of the 
duration of actual computation runs. In our experiment, 
this virtual machine remains active for more than 40 
minutes, even if the computation takes only seconds on 
the test machine. Decision Tree Regressor optimization 
took three times longer, and accordingly energy cost 
and emission had higher values. However, as shown in 
Figure 7, carbon emissions reported by GoogleColab 
are 2 orders of magnitude higher than those estimated 
by local tools CodeCarbon, even for short 
computations. This discrepancy is primarily due to 
different accounting, because GoogleColab estimates 
the true environmental cost of cloud resources, 
including both active and idle power usage. This 
estimation represents the hidden carbon costs of AI 
development and infrastructure (Strubell et al., 2019; 
Schwartz et al., 2020). A new sustainability challenge 
in ML practice is including emissions from passive 
infrastructure used in local measurements. It is of great 
importance, since data centers consume more 
electricity, accounting for 3% of global electricity 
supply and 2% of total GHG emissions, and this 
percentage is continuously growing (to 14% of the 
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world's emissions by 2040, according to estimation of 
Thangam et al., 2024 and IEA).  

Numerous questions about AI use need to be answered 
in the future, including carbon footprint over the life 
cycle, encompassing manufacturing, transport, product 
use and recycling (Wu, 2021; Guo, 2022).  

CONCLUSION 
In this paper, we estimated CO2 emissions associated 
with the training of three commonly used machine 
learning (ML) algorithms Linear Regression, k-Nearest 
Neighbors Regressor, and Decision Tree Regressor, 
applied to educational tasks for a small dataset. We 
proposed CodeCarbon as a simple, easy-to-implement 
tool suitable for estimating the environmental cost of 
ML run. Our analysis showed that default models 
produce extremely low emissions (around 10⁻⁷ to 10⁻⁶ 
kgCO₂eq), and optimized models even lower (around 
10⁻⁸ kgCO₂eq). However, the optimization process 
itself has higher environmental cost, with emissions 
rising by a few orders of magnitude (around 10⁻⁴ to 
10⁻³ kgCO₂eq). Further, we compared CodeCarbon 
estimation with those from GoogleColab, a popular 
cloud-based platform. Emissions reported by Colab are 
consistently two orders of magnitude higher. This 
discrepancy can be explained by the resource 
distribution, idle compute supply, and infrastructure 
inherent to cloud services, which local estimators like 
CodeCarbon do not include. These results underline the 
importance of transparent, and conscious emission 
tracking. Responsible use of ML implies applications 
of low-impact computation (employing lightweight ML 
as it is satisfactory), local resources when it is feasible, 
minimizing unnecessary optimization cycles, and 
selection of algorithms that balance accuracy and 
energy efficiency. As AI becomes increasingly 
personalized and embedded into global infrastructure, 
responsible development must prioritize the 
performance/efficiency trade-off. Although the 
numerous algorithms (such as those used in this paper) 
have a minor carbon footprint, their scaling and 
increasing presence across daily life, science, industry, 
agriculture, medicine, business, etc., amplify overall 
energy requirements. Therefore, it is crucial to treat ML 
emissions not as a separate issue but within the broader 
context of the expanding digital environment. 

Recommendations and Future Directions 

The forward path requires intensive action toward the 
development of green, environmentally responsible AI, 
to ensure long-term societal and ecological feasibility. 
AI practitioners should pay attention to using available 
ML tools thoughtfully, avoiding unnecessary 
optimization, improving optimization efficiency, 
considering energy-efficient algorithms and hardware. 
In addition, they should select local computation over 
cloud platforms and use renewable energy sources and 
low-carbon regions when feasible. It would be 
particularly useful to analyze emissions during the ML 
run using tools such as CodeCarbon and report results 
in a research paper along with other results.  

Future work should be expanded and based on the 
analysis of different hardware environments, larger 
datasets, and a broader range of algorithms, including 
deep learning models.  
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